ZUR WAGNER-MEERWEIN-ANALOGEN 1,2-SiMe₃-VERSCHIEBUNG VON SILICIUM ZU KOHLENSTOFF BEI DER SPALTUNG VON [(TRIMETHYLSILYL)-SILYL]METHYL-ETHERN

G. Märkl, M. Horn und W. Schlosser Institut für Organische Chemie der Universität Regensburg Universitätsstraße 31, D-8400 Regensburg

Summary: The ether-cleavage of [(tristrimethylsilyl)-silyl]methyl-ether as well as aryl(alkyl)-[(bistrimethylsilyl)-silyl]methyl-ether with BCl₃, BBr₃ is accompanied by a 1,2-Me₃Si-migration from silicon to carbon.

Während über 1,2-Alkyl-(Si \rightarrow C)-Verschiebungen bei der Umsetzung von Alkylchlormethylsilanen mit AlCl₂ (Typ 1) mehrfach berichtet wurde [1], sind

$$R-CH_2-Si-CH_2CI \xrightarrow{AICI_3} CI-Si-CH_2CH_2R (Typ 1)$$

 $1,2-R_3Si-(Si \rightarrow C)$ -Verschiebungen (Typ 2) bislang nur an einigen wenigen Beispielen bei der Einwirkung von AlCl₃ auf Chlormethyldisilane von M. Kumada u. Mitarb. [2] beschrieben worden:

$$R_{3}Si-Si-CH_{2}CI \xrightarrow{AICI_{3}} CI-Si-CH_{2}SIR_{3} (Typ 2)$$

Wir berichten über neue Umlagerungen dieser Art bei der Etherspaltung von [(Tristrimethylsily1)-sily1]methyl-ethern <u>1</u> und Ary1(Alky1)-[(bistrimethylsily1)-sily1]methyl-ethern <u>5</u>. Die Ether <u>1</u> erhält man durch Umsetzung von [Tris-(trimethylsily1)-sily1]lithium [Spaltung von [Tetrakis-(trimethylsily1)]silan [3] mit MeLi in THF [4]] bei -78 ^OC mit Alky1(Ary1)-chlormethyl-methylethern (Tab. 1):

$$Tms_{3}Si-Li + R-CH-OMe \xrightarrow{H} I$$

$$Tms_{3}Si-C-OMe$$

$$I$$

$$CI$$

$$R$$

$$\frac{1}{CI}$$

<u>1a</u>, R= H; <u>1b</u>, R= CMe₃; <u>1c</u>, R= C_6H_5 ; <u>1d</u>, R= Mesityl; Tms = SiMe₃.

Verb. R a)	Ausb. [%]	$H-NMR$ (δ (ppm)); Me ₃ Si; OMe; CH-O; R (Solvens); MS (70 eV); m/z (rel. Int. in %)
<u>1a</u> H	82	0.34 (s); 3.28 (s); 3.51 (s); (Benzol); $[M- CH_3]^+$, 277 (6); $[M- SiMe_3]$, 219 (14); $[277-HSiMe_3]^+$, 203 (6); $[277-MeOSiMe_3]$, 173 (100) b).
CMe ₃	81	0.22 (s); 3.40 (s); 3.27 (s); 0.97 (s); (CCl_4) ;
<u>1c</u> C6 ^H 5	81	0.10 (s); 3.19 (s); 4.35 (s); 7.18-7.30 (CH_2Cl_2); [M- ' CH_3], 353 (15); [M- 'SIMe_3] ⁺ , 295 (7); [353- Me_3SIOMe] ⁺ , 249 (100); 173 (92) ^b).
<u>1d</u> Mesityl	60 ^{C)}	0.13 (s); 3.10 (s); 5.08 (s); 6.81 (s), 2.28 (s), o-CH ₃ ; 2.47 (s), p-CH ₃ (CH ₂ Cl ₂); [M- 'CH ₃] ⁺ , 395 (1); [M- Me ₃ SiOMe] ⁺⁻ , 306 (4); [MeOCHMes] ⁺ , 163 (100); 173 (8) ^b .

Tab. 1: Physikalische und spektroskopische Daten der Silylether 1

a) Farblose, wachsartige Verbindungen, die sich bei 70-120 $^{\circ}C/10^{-2}$ Torr sublimieren lassen. b) Das Fragment m/z = 173, [Me₂Si-Si(SiMe₃)=CH₂]⁺ wird in fast allen MS von <u>1</u> und <u>5</u> beobachtet.

c) Schmp. 128-130 °C (aus Ethanol).

Bei der Umsetzung der Silylether <u>1</u> mit BCl_3 bzw. BBr_3 in n-Pentan bei O $^{\circ}C$ (Rkt.zeit 1-5 h) und anschließender destillativer Aufarbeitung (10⁻² Torr) erhält man in sehr guten Ausbeuten farblose öle, bei denen es sich um die Produkte <u>2</u> bzw. <u>3</u> der Etherspaltung unter gleichzeitiger 1,2-Verschiebung eines Trimethylsilyl-Restes von Silizium zum benachbarten Kohlenstoff handelt (Tab. 2):

Die Umlagerung $1 \rightarrow 2$ bzw. 3 ist formal ein elementorganisches Analogon der Wagner-Meerwein-Umlagerung. Reaktionsmechanistisch ist eine primäre Ether-Spaltung zum Carbeniumion, gefolgt von der Me $_3$ Si-1,2-Verschiebung, nicht wahrscheinlich. In Übereinstimmung mit einigen Untersuchungen zum Mechanismus der Umlagerungen vom Typ 1 [5] bzw. Typ 2 [1d] erweist sich die Trimethylsilylgruppe am Silizium (wegen der geringeren Si-Si-Bindungsenergie von 42-53 kcal/mol) als Nachbargruppe mit hervorragender Wanderungstendenz, die wahrscheinlich durch einen gleichzeitigen nucleophilen Angriff von Cl⁻, Br⁻ am zentralen Siliziumatom noch erhöht wird [7].

Zur Überprüfung der Wanderungsfähigkeit des Trimethylsilylrestes gegenüber Aryl- und Alkylsubstituenten durch intramolekulare Konkurrenzversuche synthetisierten wir die Aryl(Alkyl)-[(bistrimethylsilyl)-silyl]methyl-ether <u>5</u> durch Umsetzung des Bromsilans <u>4</u> (in 94-proz. Ausb. aus <u>1a</u> durch Spaltung mit Br_2/CH_2Cl_2 bei -20 ^OC) mit den entsprechenden Grignardverbindungen (Tab. 3).

Verb. _R a)	Ausb. [%]	Sdp. 10 ⁻² Torr	$H-NMR$ (δ (ppm)): Si-SiMe ₃ ; C-SiMe ₃ ; CHR; R (Solvens); MS (70 eV), m/z (rel. Int. %)
2a H	99	85 - 90 ^o C	0.10 (s); 0.03 (s); 0.20 (s) (CDCl ₃);
2b CMe ₃	95	135 °C/ 0.7 Torr	0.22 (s); 0.28 (s); 0.40 (s); 1.15 (s) (CH_2Cl_2) ; $[M- CH_3]^+$, 337 (22); $[M- SiMe_3]^+$, 279 (50); $[M- ClSiMe_3]^+$, 279 (100); $[(Me_3Si)_2SiCl]^+$, 209 (31).
<u>2с</u> С ₆ н ₅	97	130 ^o C	0.08 (s), 9 H; 0.17 (s), 9 H; 0.24 (s), 9 H; 2.15 (s); 6.70 - 7.20 (m) (CCl_4).
<u>2d</u> Mesityl	87	150 - 155 °C	0.17 (s); 0.14 (s); 2.62 (s); 6.85 (s); 2.30 (s), $o-CH_3$; 2.38 (2), $p-CH_3$; M^+ , 414 (s); $[M-ClSiMe_3]^+$, 306 (21); $[306-CH_3]^+$, 291 (20); 173 (22); $SiMe_3^+$. (100).
<u>3a</u> H	92	95 - 100 °C	0.32 (s); 0.25 (s), 0.48 (s) $(C_{c}H_{6})$; M ⁺ , 340 (35); [M- \cdot CH ₃] ⁺ , 325 (92); [M- \cdot SiMe ₃] ⁺ , 267 (28); [M- BrSiMe ₃] ⁺ , 188 (100).
3b CMe ₃	79	120 - 125 ⁻ C	0.36 (s); 0.27 (s); 0.51 (s); 1.12 (s) (C ₆ H ₆)
3c C6H5	96	145 - 150 °C	0.08 (s), 0.16 (s); 0.28 (s), 2.33 (s) (CH_2Cl_2) ; M ⁺ , 416 (7); [M- 'CH_3] ⁺ , 401 (25); [M- 'SiMe_3] ⁺ , 343 (9); [M- BrSiMe_3] ⁺ , 264 (68); [264- 'CH_3] ⁺ , 249 (100); [Me_3Si-Si=C-Ph] ⁺ , 190 (33).

Tab. 2: Physikalische und spektroskopische Daten von 2 und 3

a) Wachsartige, z.T. hochviskose ölige Verbindungen.

Sowohl für R= C_6H_5 , C_2H_5 wie auch für den p-Anisylrest mit seiner ausgeprägten Wanderungstendenz werden bei der Etherspaltung mit BCl₃ (BBr₃) ausschließlich die Produkte <u>6</u> der 1,2-Trimethylsilylverschiebung beobachtet (Tab. 3) [6]:

Die 1,2-Trimethylsilyl-(Si \rightarrow C)-Verschiebung wird auch bei der Spaltung vinyloger α -Silylether beobachtet. Das 1,4-Dihydrosilabenzol 7 [7] lagert bei der Umsetzung mit BCl₃ in das 1-Chlor-(1,6-bis-trimethylsilyl)-silacyclo-2,4-hexadien 8, bei der Chromatographie an Kieselgel in das 1-Methoxy-1-sila-2,4-cyclohexadien 9, um:

Verb. _R a)	Ausb. [%]	$\frac{\text{H-NMR}}{\text{MS}} (\delta(\text{ppm})); \text{Si-SiMe}_3, \text{C-SiMe}_3; \text{OMe}; -\text{CH}_2-; \text{R} (\text{Solvens}); \\ \frac{\text{MS}}{\text{MS}} (70 \text{ eV}); \text{m/z} (\text{rel. Int. } \$)$
с <u>5а</u> С6 ^Н 5	77	0.27 (s); 3.50 (s); 3.80 (s); 7.33-7.77 (m) (CH_2Cl_2) ; $[M- CH_3]^+$, 281 (4); $[M- Sime_3]$, 223 (11); $[281-MeoSiMe_3]^+$, 177 (100); 173 (15) b).
5b 4−MeOC ₆ H ₄	40	0.32 (s); 3.53 (s); 3.81 (s); AB-System: 7.02, 7.77, OMe: 3.88 (s); (CH ₂ Cl ₂).
250 C2H5	68	0.27 (s); 3.28 (s); 3.43 (s); 0.78 (t); 1.35 (q), J= 7.5 Hz (C_6H_6); [M- ' C_2H_5] ⁺ , 219 (8); [M- Me ₂ Si=CH ₂] ⁺ ', 176 (39); [M- MeOSiMe ₃] ⁺ , 144 (16); [144- 'CH ₃] ⁺ , 129 (55).
<u>ба</u> С ₆ Н ₅	94	0.24 (s); 0.06 (s); 0.27 (s); 7.30–7.85 (m); (CH_2Cl_2) ; M ⁺ , 300 (5); [M- 'CH_3] ⁺ , 285 (13); [M- 'SiMe_3] ⁺ , 227 (9); [M- ClSiMe_3] ⁺ , 192 (21); [192– 'CH_3], 177 (100).
^{6b} 4−MeOC ₆ H ₄	84	0.22 (s); 0.04 (s); 0.47 (s); AB-System: 7.03, 7.61; 4-OMe: 3.85 (s); (CH ₂ Cl ₂); M^+ , 330 (10); [M- 'SiMe ₃] ⁺ , 257 (11); [M- ClSiMe ₃] ⁺ , 222 (32); [222- 'CH ₃] ⁺ , 207 (100).
<u>6с</u> С <u>2</u> Н ₅	88	0.20 (s); 0.17 (s); 0.18 (s); 0.87 (t); 1.24 (q), J= 7.0 Hz (C_6H_6) ; M ⁺ , 252 (9); [M- C_2H_5] ⁺ , 223 (s); [M- ClSiMe ₃] ⁺ , 144 (100); [144- C_{13}] ⁺ , 129 (52); [144- C_2H_4] ⁺ , 116 (86); [144- C_2H_5] ⁺ , 115 (45)
8	64	0.27 (s); 0.03 (s); CMe_3 : 1.06 (s); M^+ , 330 (48); $[M- CH_3]^+$, 315 (33); $[M- SiMe_3]^+$, 237 (18); $[237- C1]^+$, 222 (51).

Tab. 3: Physikalische und spektroskopische Daten von 5, 6, 8 und 9

a) $Sdp.[^{O}C]/10^{-2}$ Torr; 5a: 95-100; 5b: 100; 5c: 35-40; 6a: 80-85; 6b: 120-125; 6c: 120/12 Torr; 8: 105; 9: 110; b) siehe Fußnote b) Tab. 1.

0.17 (s); -0.01 (s); CMe₃: 1.13 (s); OMe: 3.15 (s); M⁺, 326 (8); [M- 'CH₃]⁺, 317 (26); [M⁻ 'SiMe₃]⁺, 253 (76).

LITERATUR

9

50

- [1] a) F.C. Whitmore, L.H. Sommer, J. Gold, J.Am.Chem.Soc. <u>69</u>, 1976 (1947);
 b) F.C. Whitmore, L.H. Sommer, D.L. Bailey, J. Gold, ibid. <u>76</u>, 801 (1954);
 c) M. Kumada, M. Ishikawa, S. Maeda, K. Ikura, J. Organomet. Chem. <u>2</u>, 146 (1964);
 d) R.W. Bott, C. Eaborn, B.M. Rushton, ibid. <u>3</u>, 455 (1965);
 e) W. Steward, W.J. Uhl, J.W. Sands, ibid. <u>15</u>, 329 (1968).
- [2] a) M. Kumada, J. Nakajima, M. Ishikawa, Y. Yamamoto, J.Org.Chem. 23, 292 (1958); b) M. Kumada, M. Ishikawa, ibid. 1, 411 (1964); c) H. Sakurai, H. Yamomori, M. Kumada, J.Org.Chem. 33, 1527 (1968); d) K. Tamao, J. Organomet. Chem. 30, 339 (1971).
- [3] H. Gilman, C.L. Smith, J.Am.Chem.Soc. 86, 1454 (1964).
- [4] H. Gilman, J.M. Holmes, C.L. Smith, Chem.Ind. (London) 1965, 848.
- [5] siehe [1d], [1e]; A.G. Brook, K. Klinge, G.E. Le Grow, J.J. Sheeto, J. Organomet. Chem. <u>2</u>, 491 (1964); T.J. Hairston, D.H. O'Brien, ibid. <u>23</u>, C 41 (1970).
- [6] 4 unterliegt mit BCl₃ (BBr₃) nur der Etherspaltung, <u>5d</u> mit BBr₃ der Etherspaltung und Umlagerung zu Me₃Si-Si(CH₂Br)(Br)CH₂SiMe₃.
- [7] G. Märkl, P. Hofmeister, Tetrahedron Lett. <u>1976</u>, 3419; G. Märkl,
 H. Baier, P. Hofmeister, F. Kees, C. Soper, J. Organomet. Chem. <u>173</u>,
 125 (1979).

(Received in Germany 4 June 1986)